Menu▼
NWT Publications / Individual Pubs ...
Books on a shelf

Terrestrial carbon balance in a drier world: the effects ofwater availability in southwestern North America, 2016


Biederman, J.A., Scott, R.L., Goulden, M.L., Vargas, R., Litvak, M.E., Kolb, T.E., Yepez, E.A., Oechel, W. C., Blanken, P. D., Bell, T.W., Garatuza-Payan, J., Maurer, G.E., Dore, S., Burns, S.P.


Global Change Biology 22 :1867-1879
DOI: 10.1111/gcb.13222
NWT Accession Number: NWT1898

Abstract


Global modeling efforts indicate semiarid regions dominate the increasing trend and interannual variation of net CO2 exchange with the atmosphere, mainly driven by water availability. Many semiarid regions are expected to undergo climatic drying, but the impacts on net CO2 exchange are poorly understood due to limited semiarid flux observations. Here we evaluated 121 site-years of annual eddy covariance measurements of net and gross CO2
exchange (photosynthesis and respiration), precipitation, and evapotranspiration (ET) in 21 semiarid North American ecosystems with an observed range of 100 – 1000 mm in annual precipitation and records of 4–9 years each. In addition to evaluating spatial relationships among CO2 and water fluxes across sites, we separately quantified site-level temporal relationships, representing sensitivity to interannual variation. Across the climatic and ecological gradient, photosynthesis showed a saturating spatial relationship to precipitation, whereas the photosynthesis–ET relationship was linear, suggesting ET was a better proxy for water available to drive CO2 exchanges after hydrologic losses. Both photosynthesis and respiration showed similar site-level sensitivity to interannual changes in ET among the 21 ecosystems. Furthermore, these temporal relationships were not different from the spatial relationships of long-term mean CO2 exchanges with climatic ET. Consequently, a hypothetical 100-mm change in ET, whether short term or long term, was predicted to alter net ecosystem production (NEP) by 64 gCm-2 yr-1. Most of the unexplained NEP variability was related to persistent, site-specific function, suggesting prioritization of research on slow-changing controls. Common temporal and spatial sensitivity to water availability increases our confidence that site-level responses to interannual weather can be extrapolated for prediction of CO2 exchanges over decadal and longer timescales relevant to societal response to climate change.
 

Keywords

carbon dioxide, climate, ecosystem, evapotranspiration, net ecosystem exchange, net ecosystem production, photosynthesis, productivity, respiration, semiarid, water

Related Field Location(s):

C1

Related Data by Discipline(s):

BiogeochemistryClimatology/meteorologyPlant/vegetation ecology

Citation

Biederman, J.A., Scott, R.L., Goulden, M.L., Vargas, R., Litvak, M.E., Kolb, T.E., Yepez, E.A., Oechel, W. C., Blanken, P. D., Bell, T.W., Garatuza-Payan, J., Maurer, G.E., Dore, S., Burns, S.P., (2016) Terrestrial carbon balance in a drier world: the effects ofwater availability in southwestern North America. Global Change Biology 22 :1867-1879 , DOI: 10.1111/gcb.13222

Instaar
Instaar
NSF
CU Boulder

This material is based upon work supported by the National Science Foundation under Cooperative Agreement #DEB-1637686. Any opinions, findings, conclusions, or recommendations expressed in the material are those of the author(s) and do not necesarily reflect the views of the National Science Foundation.

Please contact lternwt@colorado.edu with questions, comments, or for technical assistance regarding this website.

Content

Main Menu

Home Location Flora/Fauna Research Data Publications Outreach Personnel

Utilities

News Links Contact PI login